ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ **ΓΟCT P** 53777— 2010

ЛИГАТУРЫ АЛЮМИНИЕВЫЕ

Технические условия

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 PA3PAБOTAH Техническим комитетом по стандартизации ТК 297 «Материалы и полуфабрикаты из легких и специальных сплавов» (ОАО «Всероссийский институт легких сплавов») и ООО «Интермикс Мет»
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 297 «Материалы и полуфабрикаты из легких и специальных сплавов»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 25 марта 2010 г. № 34-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ
 - 5 Издание (март 2012 г.) с Изменением № 1, принятым 30 ноября 2011 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2010 © СТАНДАРТИНФОРМ, 2012

ΓΟCT P 53777—2010

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Технические требования	2
4	Правила приемки	7
5	Методы испытаний	7
6	Маркировка, упаковка, транспортирование и хранение	3
7	Требования безопасности и охраны окружающей среды	3
8	Гарантии предприятия-изготовителя	3
Пμ	риложение А (обязательное) Цветовая маркировка лигатур	9

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЛИГАТУРЫ АЛЮМИНИЕВЫЕ

Технические условия

Master alloys of aluminium. Specifications

Дата введения — 2010—07—01

1 Область применения

Настоящий стандарт распространяется на алюминиевые лигатуры (далее — лигатуры), получаемые методом плавления и используемые в металлургической и литейной промышленности.

Лигатуры предназначены для легирования и модифицирования при производстве деформируемых и литейных алюминиевых сплавов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.005—88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007—76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 7727—81 Сплавы алюминиевые. Методы спектрального анализа

ГОСТ 11739.2—90 Сплавы алюминиевые литейные и деформируемые. Методы определения бора

ГОСТ 11739.3—99 Сплавы алюминиевые литейные и деформируемые. Методы определения бериллия

ГОСТ 11739.4—90 Сплавы алюминиевые литейные и деформируемые. Методы определения висмута

ГОСТ 11739.5—90 Сплавы алюминиевые литейные и деформируемые. Методы определения ванадия

ГОСТ 11739.6—99 Сплавы алюминиевые литейные и деформируемые. Методы определения железа

ГОСТ 11739.7—99 Сплавы алюминиевые литейные и деформируемые. Методы определения кремния

ГОСТ 11739.9—90 Сплавы алюминиевые литейные и деформируемые. Методы определения кадмия

ГОСТ 11739.11—98 Сплавы алюминиевые литейные и деформируемые. Методы определения магния

ГОСТ 11739.12—98 Сплавы алюминиевые литейные и деформируемые. Методы определения марганца

ГОСТ 11739.13—98 Сплавы алюминиевые литейные и деформируемые. Методы определения меди

FOCT P 53777—2010

- ГОСТ 11739.15—99 Сплавы алюминиевые литейные и деформируемые. Методы определения натрия
- ГОСТ 11739.16—90 Сплавы алюминиевые литейные и деформируемые. Методы определения никеля
- ГОСТ 11739.17—90 Сплавы алюминиевые литейные и деформируемые. Методы определения олова
- ГОСТ 11739.18—90 Сплавы алюминиевые литейные и деформируемые. Методы определения свинца
- ГОСТ 11739.19—90 Сплавы алюминиевые литейные и деформируемые. Методы определения сурьмы
- ГОСТ 11739.20—99 Сплавы алюминиевые литейные и деформируемые. Метод определения титана
- ГОСТ 11739.21—90 Сплавы алюминиевые литейные и деформируемые. Методы определения хрома
- ГОСТ 11739.23—99 Сплавы алюминиевые литейные и деформируемые. Методы определения циркония
- ГОСТ 11739.24—98 Сплавы алюминиевые литейные и деформируемые. Методы определения цинка
- ГОСТ 11739.25—90 Сплавы алюминиевые литейные и деформируемые. Методы определения скандия
 - ГОСТ 19433—88 Грузы опасные. Классификация и маркировка
- ГОСТ 24231—80 Цветные металлы и сплавы. Общие требования к отбору и подготовке проб для химического анализа
 - ГОСТ 31340—2007 Предупредительная маркировка химической продукции. Общие требования

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Технические требования

- 3.1 Изготовление, контроль и приемку лигатур на предприятии-изготовителе проводят по техническим документам, утвержденным на предприятии-изготовителе с учетом требований настоящего стандарта.
- 3.2 Марки и химический состав лигатур должны соответствовать указанным в таблице 1. Цветовая маркировка лигатур приведена в приложении А.
 - 3.3 Массовая доля элементов, указанная в таблице 1, максимальная, если не указаны пределы.

		Массовая доля													
Марка лигатуры	Кремний	21/2-22-2	Медь	Марганец	Магний	Хром	Ll.we z	11		Титан	Прочие элементы				
	кремнии	Железо	медь	марганец	ічіаі ний	Дром	Никель	Цинк	Другие элементы	ійіан	Каждый	Сумма			
AIB3	0,3	0,3	_	_	1	_	_	-	Бор: 2,5—3,5	_	0,04	0,1			
AIB4	0,3	0,3	_	_	_	_	_	_	Бор: 3,5—4,5	_	0,04	0,1			
AIB5	0,3	0,3	_	_		_	_		Бор: 4,5—5,5	_	0,04	0,1			
AlBe5	0,3	0,3	_	_	0,05	_	_		Бериллий: 4,5—6,0		0,04	0,1			
AlBi3	0,3	0,3	_	_		_	_		Висмут: 2,7—3,3		0,04	0,1			
AlCa6	0,3	0,3	_	0,05	0,05	_	_		Кальций: 5,0—7,0		0,04	0,1			
AlCa10	0,3	0,3	_	_	_	_	_	_	Кальций: 9,0—11,0	_	0,04	0,1			
AlCo10	0,2	0,3	_	_		_	_		Кобальт: 9,0—11,0	_	0,04	0,1			
AlCr5 (A)	0,2	0,3	0,05	0,05	0,05	4,5—5,5	_	0,05	_		0,04	0,1			
AlCr5 (B)	0,5	0,7	0,2	0,4	0,5	4,5—5,5	0,2	0,2	_	0,1	0,04	0,1			
AlCr10	0,2	0,3	0,05	0,05	0,05	9,0—11,0	_	0,05	_	0,03	0,04	0,1			
AlCr20 (A)	0,3	0,3	_	_	_	18,0—22,0		_	_	_	0,04	0,1			
AlCr20 (B)	0,5	0,7	0,2	0,4	0,5	18,0—22,0	0,2	0,2	_	0,1	0,04	0,1			
AlCu33 (A)	0,3	0,3	31,0—35,0	_	1	_	_	0,05	_		0,04	0,1			
AlCu33 (B)	0,5	0,7	31,0—35,0	0,4	0,5	0,1	0,2	0,2	_	0,1	0,04	0,1			
AlCu50 (A)	0,3	0,3	47,0—53,0	0,05	0,05	_		0,05	_	0,03	0,04	0,1			
AlCu50 (B)	0,5	0,7	47,0—53,0	0,4	0,5	0,1	0,2	0,2	_	0,1	0,04	0,1			
AlFe10 (A)	0,3	9,0—11,0	_	_		_	_		_	_	0,04	0,1			
AlFe10 (B)	0,5	9,0—11,0	0,2	0,4	0,5	0,1	0,2	0,2	_	0,1	0,04	0,1			
AlFe20	0,3	18,0—22,0	_	0,2		_	_	_	_	_	0,04	0,1			
AIMg10	0,3	0,3	_	_	9,0—11,0	_	_		_	_	0,04	0,1			
AlMg20	0,3	0,3	_	_	18,0—22,0	_	_	_	_	_	0,04	0,1			

В процентах

						Ma	ассовая доля					Процентал
Марка лигатуры	Кремний	Железо	Медь	Марганец	Магний	Хром	Никель	Цинк	Другие элементы	Титан	Прочие элементы	
		711071000		Мартанод		7 , p s		7	Hp)s shemsing.		Каждый	Сумма
AIMg50	0,3	0,3	_	_	47,0—53,0	_	_	_	_	_	0,04	0,1
AlMn10 (A)	0,3	0,4	0,04	9,0—11,0	0,04	<u> </u>	_	0,04	_	0,03	0,04	0,1
AlMn10 (B)	0,5	0,7	0,2	9,0—11,0	0,5	0,1	0,2	0,2	_	0,1	0,04	0,1
AlMn20 (A)	0,3	0,4	0,04	18,0—22,0	0,04	<u> </u>	_	0,04	_	0,03	0,04	0,1
AlMn20 (B)	0,5	0,7	0,2	18,0—22,0	0,5	0,1	0,2	0,2	_	0,1	0,04	0,1
AlMn60 (A)	0,3	0,3	_	58,0—64,0	_	_	_	_	_	_	0,04	0,1
AlMn60 (B)	0,3	1,0	_	58,0—64,0	_	_	_	_	_	_	0,04	0,1
AlNi10	0,3	0,3	_	_	_	_	9,0—11,0	_	_		0,04	0,1
AlNi20	0,3	0,3	_	_	_	_	18,0—22,0		_	_	0,04	0,1
AISb10	0,3	0,3	_	_	_	_	_	_	Сурьма: 9,0—11,0	_	0,04	0,1
AlSc2 (A)	0,05	0,05	0,01	0,01	0,1	_		_	Скандий: 1,7—2,3 Фтор: 0,01 Кальций: 0,01 Сумма РЗЭ: 0,01	_	0,04	0,1
AlSc2 (B)	0,3	0,3	0,05	0,05	0,1	_	_		Скандий: 1,7—2,3 Фтор: 0,01 Кальций: 0,01 Сумма РЗЭ: 0,01	_	0,04	0,1
AISc5 (A)	0,05	0,05	0,01	0,01	0,1	_	_	_	Скандий: 4,7—5,3 Фтор: 0,01 Кальций: 0,01 Сумма РЗЭ: 0,01	_	0,04	0,1
AlSc5 (B)	0,3	0,3	0,05	0,05	0,1	_	_	_	Скандий: 4,7—5,3 Фтор: 0,01 Кальций: 0,01 Сумма РЗЭ: 0,01	_	0,04	0,1
AlSi20 (A)	18,0—22,0	0,3	_	_	_	_	_	_	Кальций: 0,06	_	0,04	0,1

Марка лигатуры	Кремний	Железо	Медь	Марганец	Магний	Хром	Никель	Цинк	Другие элементы	Титан	Прочие э	лементы
											Каждый	Сумма
AlSi20 (B)	18,0—22,0	0,7	0,2	0,4	0,5	0,1	0,2	0,2	Кальций: 0,06	0,1	0,04	0,1
AlSi50 (A)	47,0—53,0	0,3	0,05	0,05	0,05	0,05	0,05	0,05	Кальций: 0,15	0,05	0,04	0,1
AlSi50 (B)	47,0—53,0	0,7	0,2	0,4	0,5	0,1	0,2	0,2	Кальций: 0,15	0,1	0,04	0,1
AlSr3,5	0,3	0,3	_	_	_	_	_	_	Стронций: 3,2—3,8 Кальций: 0,03 Фосфор: 0,01	_	0,04	0,1
AlSr5	0,3	0,3	_	_	0,05	_	_	_	Стронций: 4,5—5,5 Барий: 0,05 Кальций: 0,05 Фосфор: 0,01	_	0,04	0,1
AlSr10	0,3	0,3	_	_	0,1	_	_	_	Стронций: 9,0—11,0 Барий: 0,1 Кальций: 0,1 Фосфор: 0,01	_	0,04	0,1
AlSr10Ti1B0,2	0,3	0,3		_	0,1	_	_	_	Стронций: 9,0—11,0 Бор: 0,15—0,25 Барий: 0,1 Кальций: 0,1 Фосфор: 0,01	0,8—1,2	0,04	0,1
AlTi2,5	0,2	0,3	0,05	0,05	0,05	_	_	0,05	Ванадий: 0,2	2,0—3,0	0,04	0,1
AlTi5	0,2	0,3	0,05	0,05	0,05	_	_	0,05	Ванадий: 0,2	4,5—5,5	0,04	0,1
AlTi10 (A)	0,2	0,3	_	_	_	_	_	_	Ванадий: 0,3	9,0—11,0	0,04	0,1
AlTi10 (B)	0,3	0,7	0,2	0,4	0,5	0,1	0,2	0,2	Ванадий: 0,5	9,0—11,0	0,04	0,1
AITi3B1	0,3	0,3	_	_	_	_	_	_	Бор: 0,8—1,2 Ванадий: 0,2	2,7—3,5	0,04	0,1
AlTi5B0,2	0,2	0,3		_	_		_	_	Бор: 0,15—0,25 Ванадий: 0,15	4,5—5,5	0,04	0,1

Массовая доля

						М	ас совая доля					
Марка лигатуры						.,			_		Прочие элемент	
	Кремний	Железо	Медь	Марг а нец	Магний	Хром	Никель	Цинк	Другие элементы	Титан	Каждый	Сумма
AlTi5B0,6	0,3	0,3	_	_	_	_	_	_	Бор: 0,5—0,8 Ванадий: 0,2	4,5—5,5	0,04	0,1
AlTi5B1	0,2	0,3	_		_	_	_		Бор: 0,9—1,1 Ванадий: 0,15	4,5—5,5	0,04	0,1
AIV5	0,3	0,4	_	0,15	_	_	_	_	Ванадий: 4,0—6,0	_	0,04	0,1
AIV10	0,3	0,3	_	_	1				Ванадий: 9,0—11,0	_	0,04	0,1
AlZr2,5	0,3	0,3	_	_	1	_			Цирконий: 2,0—3,0	_	0,04	0,1
AlZr5 (A)	0,2	0,3	0,05	0,05	0,05	_	_	0,05	Цирконий: 4,5—5,5	_	0,04	0,1
AlZr5 (B)	0,3	0,45	0,1	_		_	0,1	_	Цирконий: 4,5—5,5	0,1	0,04	0,1
AlZr10 (A)	0,2	0,3	0,05	0,05	0,05	_	_	0,05	Цирконий: 9,0—11,0	_	0,04	0,1
AlZr10 (B)	0,3	0,45	0,2		1	_	0,2	_	Цирконий: 9,0—11,0 Олово: 0,2	0,2	0,04	0,1
AlZr15	0,3	0,4		_	_	_	_	_	Цирконий: 13,5—16,0		0,04	0,1
AIP2,5	0,3	0,3	9,0	_	_		_	_	Фосфор: 1,0—5,0	0,05	0,04	0,1
AIP2,5A	0,3	0,3	4,5	_	_	_	_	_	Фосфор: 1,0—5,0	0,05	0,04	0,1

(Измененная редакция, Изм. № 1).

Примечания

- 1 В графу «Другие элементы» включены элементы: барий, бериллий, бор, ванадий, висмут, кальций, кобальт, олово, скандий, стронций, сурьма, цирконий, фосфор, фтор, редкоземельные элементы (РЗЭ), которые должны быть проанализированы в установленном порядке.
- 2 В графу «Прочие элементы» («Сумма») включены все элементы, массовая доля которых равна или более 0,01 % каждого из элементов в отдельности. Прочие элементы не определяются, а гарантируются предприятием изготовителем лигатур.
 - 3 В лигатурах, кроме лигатуры марки AlZr10 (B), максимальное содержание олова не должно превышать 0,02 %.
- 4 Предприятие-изготовитель гарантирует в лигатурах содержание суммы свинец + кадмий ≤ 0,0095 %, а в лигатурах, не легированных бериллием, содержание бериллия ≤ 0,0001 %.

- $3.4\,$ Лигатуры изготовляют в виде вафельных пластин массой не более $10\,$ кг или в виде прутка диаметром $(9,5\pm0,5)\,$ мм, смотанного в бухту массой не более $180\,$ кг. Лигатуру AlSc изготовляют в виде пластин, отлитых в кокильную изложницу, с последующей обрезкой литника. Лигатуру марки AlMn60 поставляют в виде чешуек размером $1-10\,$ мм. Некоторые лигатуры, вследствие их металлургических характеристик и состава, выпускают в виде кусков неправильной формы или разломанных вафельных пластин
- 3.5 Размеры вафельных пластин подлежат согласованию между изготовителем и потребителем лигатур. Рекомендуемые размеры вафельных пластин: $440 \times 220 \times 50$, $500 \times 200 \times 50$ или $300 \times 200 \times 50$ мм.
- 3.6 Поверхность вафельных пластин должна быть чистой. На поверхности не допускаются шлаковые и другие инородные включения, видимые невооруженным глазом. На поверхности допускаются следы окисных плен, следы вырубки или зачистки дефектов.
- 3.7 Наличие на поверхности прутков и макрошлифе шлаковых и других инородных включений, видимых невооруженным глазом, не допускается.
- 3.8 Плавка должна быть идентифицирована соответствующим номером. Форма образцов и условия их отбора для химического и спектрального анализов определяются технологическими инструкциями предприятия-изготовителя. Каждый образец должен быть отобран от расплавленного металла из печи, жидкого потока, отлитой пластины или прутка после завершения процесса обработки.

4 Правила приемки

- 4.1 Лигатуры принимают партиями массой не более 1000 кг. Партия должна состоять из продукции одной марки, одного размера, одной или нескольких плавок и быть оформлена одним документом о качестве, содержащим:
 - товарный знак или наименование предприятия-изготовителя и товарный знак;
 - наименование потребителя;
 - марку продукции, вид продукции, цветовую маркировку согласно приложению А;
 - номер партии, номера плавок;
 - количество грузовых мест, их массы нетто и брутто;
 - результаты химического анализа каждой плавки в объеме требований таблицы 1;
 - обозначение настоящего стандарта.

Документ о качестве должен иметь печать предприятия-изготовителя и подпись руководителя службы качества.

- 4.2 На предприятии-изготовителе контроль лигатур осуществляют в следующем объеме:
- требования к качеству поверхности на наличие дефектов 100 %:
- масса партии 100 %;
- маркировка 100 %;
- качество vпаковки 100 %:
- химический состав лигатуры каждая плавка.
- 4.3 При получении неудовлетворительных результатов химического и спектрального анализов хотя бы по одному из показателей по нему проводят повторный анализ на удвоенном количестве образцов, взятых от той же партии. Результаты повторного анализа распространяют на всю партию.
- 4.4 Предприятие-потребитель достоверность химического анализа лигатур, проводимого предприятием-изготовителем, определяет на отобранных образцах двух процентах пластин, бухт от партии, но не менее чем на одной пластине, бухте каждой плавки.

5 Методы испытаний

- 5.1 Отбор, подготовка проб и хранение запасных проб для определения химического состава лигатур в соответствии с ГОСТ 24231. Допускается отбор стружки для химического анализа проводить методом фрезерования торцевой поверхности темплета, отрезанного на расстоянии одной четвертой длины вафельной пластины.
- 5.2 Для определения химического состава лигатур, изготовляемых в виде прутка диаметром 9,5 мм, смотанного в бухту, отбирают образцы длиной до 300 мм от бухты. Из этих образцов на токарном станке отбирают стружку, далее в соответствии с ГОСТ 24231.

- 5.3 Химический состав лигатур определяют по ГОСТ 7727, ГОСТ 11739.2 ГОСТ 11739.7, ГОСТ 11739.9, ГОСТ 11739.11 ГОСТ 11739.13, ГОСТ 11739.15 ГОСТ 11739.21, ГОСТ 11739.23 ГОСТ 11739.25, а также по методикам предприятий-изготовителей, согласованным с потребителем.
- 5.4 Качество поверхности продукции проверяют осмотром без применения увеличительных приборов, массу определяют взвешиванием на механических или электронных весах, обеспечивающих необходимую точность взвешивания.
- 5.5 Для проведения химического анализа лигатур в виде пластин отбирают образцы толщиной 20 мм в поперечном сечении с противоположных концов фрагмента.

6 Маркировка, упаковка, транспортирование и хранение

- 6.1 На каждую пластину и бухту лигатур с двух противоположных торцевых сторон несмываемой краской должна быть нанесена цветовая маркировка полосой или полосами шириной от 10 до 15 мм каждая в соответствии с приложением А.
- 6.2 На каждую пластину лигатур должна быть нанесена маркировка несмываемой краской с указанием номера плавки. Допускается маркировка металлическим клеймом. Высота цифр составляет не менее15 мм.
- 6.3 Маркировка лигатур должна быть нанесена на ярлык, прикрепленный к упаковке блока или бухте, и содержать следующую информацию:
 - товарный знак или наименование предприятия-изготовителя и товарный знак;
 - наименование и марку продукции, вид продукции, цветовую маркировку;
 - номер партии;
 - массы брутто и нетто;
 - результаты химического анализа каждой плавки в объеме требований таблицы 1.
- 6.4 Пластины лигатур поставляют партиями, упакованными в блоки, на деревянных поддонах. Бухты лигатур в виде прутка поставляют упакованными по 2—3 бухты на деревянных поддонах. Бухту сматывают одним жгутом (отрезком) прутка. Блоки пластин или бухты лигатур крепят лентой к деревянным поддонам и упаковывают в полиэтиленовую пленку для защиты от попадания влаги.
- 6.5 Упаковка пластин или бухт должна обеспечивать их сохранность при транспортировании и не должна разрушаться при погрузке, перегрузке и хранении.
- 6.6 Чешуйчатую лигатуру марки AlMn60 поставляют в биг-бегах массой 500 или 1000 кг, прикрепляя ярлык с маркировкой согласно 6.3.
- 6.7 Транспортирование лигатур осуществляют всеми видами транспорта в крытых транспортных средствах.
- 6.8 Лигатуры должны храниться в крытых сухих помещениях в условиях, исключающих попадание на нее влаги и активных химических веществ.
- 6.9 При маркировке лигатур следует учитывать требования ГОСТ 31340 (в части предупреждения об особых рисках).

7 Требования безопасности и охраны окружающей среды

- 7.1 При изготовлении лигатур алюминий-бериллий требования безопасности определяются наличием бериллия, который по степени воздействия на организм относится к первому классу опасности по ГОСТ 12.1.007. Воздух в рабочей зоне должен соответствовать санитарно-гигиеническим требованиям ГОСТ 12.1.005.
- 7.2 При изготовлении остальных марок лигатур согласно таблице 1 требования безопасности определяются аэрозолями алюминия преимущественно фиброгенного действия, которые по степени воздействия на организм относятся к третьей степени опасности по ГОСТ 12.1.007. Воздух в рабочей зоне должен соответствовать санитарно-гигиеническим требованиям ГОСТ 12.1.005.
- 7.3 По условиям транспортирования и хранения лигатуры всех марок относят к 9-му классу опасности категории 923 по ГОСТ 19433.

8 Гарантии предприятия-изготовителя

- 8.1 Предприятие-изготовитель гарантирует соответствие лигатур требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
 - 8.2 Гарантийный срок хранения лигатур 10 лет со дня изготовления.

Приложение А (обязательное)

Цветовая маркировка лигатур

Таблица А.1

Марка лигатуры	Цветовая маркировка
AIB3	Одна желтая полоса
AIB4	Две желтые полосы
AIB5	Три желтые полосы
AlBe5	Одна серая и одна оранжевая полосы
AlBi3	Одна желтая и одна фиолетовая полосы
AlCa6	Одна белая и одна голубая полосы
AlCa10	Одна белая и одна оранжевая полосы
AlCo10	Одна оранжевая и одна светло-голубая полосы
AlCr5 (A)	Одна фиолетовая полоса
AlCr5 (B)	Одна фиолетовая и одна серая полосы
AlCr10	Две фиолетовые полосы
AlCr20 (A)	Три фиолетовые полосы
AlCr20 (B)	Три фиолетовые и одна серая полосы
AlCu33 (A)	Две оранжевые полосы
AlCu33 (B)	Три оранжевые полосы
AlCu50 (A)	Три оранжевые и одна красная полосы
AlCu50 (B)	Три оранжевые и одна белая полосы
AIFe10 (A)	Одна черная и одна коричневая полосы
AlFe10 (B)	Одна черная и одна зеленая полосы
AlFe20	Одна черная и одна оранжевая полосы
AIMg10	Одна белая и одна черная полосы
AIMg20	Одна белая и одна фиолетовая полосы
AIMg50	Одна белая и две фиолетовые полосы
AlMn10 (A)	Одна коричневая полоса
AlMn10 (B)	Одна коричневая и одна белая полосы
AlMn20 (A)	Две коричневые и одна белая полосы
AlMn20 (B)	Две коричневые и одна оранжевая полосы
AlMn60 (A)	Две коричневые полосы
AlMn60 (B)	Три коричневые полосы
AlNi10	Одна серая полоса
AlNi20	Две серые полосы
AISb10	Одна белая и одна желтая полосы
AISc2 (A)	Одна золотистая полоса
AISc2 (B)	Две золотистые полосы
AISc5 (A)	Три золотистые полосы
AISc5 (B)	Четыре золотистые полосы

ΓΟCT P 53777—2010

Окончание таблицы А.1

Марка лигатуры	Цветовая маркировка
AlSi20 (A)	Одна белая полоса
AlSi20 (B)	Одна белая и одна зеленая полосы
AlSi50 (A)	Три белые полосы
AlSi50 (B)	Две белые и одна красная полосы
AISr3,5	Одна светло-голубая полоса
AISr5	Одна светло-голубая и одна желтая полосы
AlSr10	Две светло-голубые полосы
AlSr10Ti1B0,2	Одна светло-голубая и одна красная полосы
AlTi2,5	Две красные полосы
AlTi5	Одна красная полоса
AlTi10 (A)	Одна красная и одна черная полосы
AlTi10 (B)	Одна красная и одна зеленая полосы
AITi3B1	Одна зеленая и одна коричневая полосы
AlTi5B0,2	Одна зеленая и одна черная полосы
AITi5B0,6	Одна зеленая и одна желтая полосы
AITi5B1	Одна зеленая полоса
AIV5	Одна черная полоса
AIV10	Две черные полосы
AlZr2,5	Одна темно-синяя и одна оранжевая полосы
AlZr5 (A)	Одна темно-синяя полоса
AlZr5 (B)	Одна темно-синяя и одна красная полосы
AlZr10 (A)	Две темно-синие полосы
AlZr10 (B)	Две темно-синие и одна красная полосы
AlZr15	Одна темно-синяя и одна зеленая полосы
AIP2,5	Одна белая и одна красная полосы
AIP2,5A	Одна белая и две красные полосы

(Измененная редакция, Изм. № 1).

УДК 669.71+669.715:006.354

OKC 77.120

B51

ОКП 17 1224

Ключевые слова: алюминиевые лигатуры, марки, химический состав

Редактор М.И. Максимова Технический редактор В.Н. Прусакова Корректор В.Е. Нестерова Компьютерная верстка П.А. Круговой

Подписано в печать 22.05.2012. Формат $60 \times 84 \frac{1}{8}$.

Гарнитура Ариал.

Печать офсетная.

Усл. печ. л. 1,86. Уч.-изд. л. 1,40. Тираж 25 экз.

Зак. 473.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.

www.gostinfo.ru

info@gostinfo.ru

Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.

Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.